Video classification with CNN

Abstract - Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. Encouraged by these results, we provide an extensive empirical evaluation of CNNs on large-scale video classification using a new dataset of 1 million YouTube videos belonging to 487 classes. We study multiple approaches for extending the connectivity of a CNN in time domain to take advantage of local spatio-temporal information and suggest a multiresolution, foveated architecture as a promising way of speeding up the training. Our best spatio-temporal networks display significant performance improvements compared to strong feature-based baselines (55.3% to 63.9%), but only a surprisingly modest improvement compared to single-frame models (59.3% to 60.9%). We further study the generalization performance of our best model by retraining the top layers on the UCF-101 Action Recognition dataset and observe significant performance improvements compared to the UCF-101 baseline model (63.3% up from 43.9%).

Robust Facial Landmark Detection via a Fully-Convolutional Local-Global Context Network

Abstract - While fully-convolutional neural networks are very strong at modeling local features, they fail to aggregate global context due to their constrained receptive field. Modern methods typically address the lack of global context by introducing cascades, pooling, or by fitting a statistical model. In this work, we propose a new approach that introduces global context into a fully-convolutional neural network directly. The key concept is an implicit kernel convolution within the network. The kernel convolution blurs the output of a local-context subnet, which is then refined by a global-context subnet using dilated convolutions. The kernel convolution is crucial for the convergence of the network because it smoothens the gradients and reduces overfitting. In a postprocessing step, a simple PCA-based 2D shape model is fitted to the network output in order to filter outliers. Our experiments demonstrate the effectiveness of our approach, outperforming several state-of-the-art methods in facial landmark detection.

Object Detection from Video Tubelets with Convolutional Neural Networks

Abstract - Deep Convolution Neural Networks (CNNs) have shown impressive performance in various vision tasks such as image classification, object detection and semantic segmentation. For object detection, particularly in still images, the performance has been significantly increased last year thanks to powerful deep networks (e.g. GoogleNet) and detection frameworks (e.g. Regions with CNN features (RCNN)). The lately introduced ImageNet [6] task on object detection from video (VID) brings the object detection task into the video domain, in which objects’ locations at each frame are required to be annotated with bounding boxes. In this work, we introduce a complete framework for the VID task based on still-image object detection and general object tracking. Their relations and contributions in the VID task are thoroughly studied and evaluated. In addition, a temporal convolution network is proposed to incorporate temporal information to regularize the detection results and shows its effectiveness for the task. Code is available at

Multi-Object Tracking with Quadruplet Convolutional Neural Networks

Abstract - We propose Quadruplet Convolutional Neural Networks (Quad-CNN) for multi-object tracking, which learn to associate object detections across frames using quadruplet losses. The proposed networks consider target appearances together with their temporal adjacencies for data association. Unlike conventional ranking losses, the quadruplet loss enforces an additional constraint that makes temporally adjacent detections more closely located than the ones with large temporal gaps. We also employ a multi-task loss to jointly learn object association and bounding box regression for better localization. The whole network is trained end-to-end. For tracking, the target association is performed by minimax label propagation using the metric learned from the proposed network. We evaluate performance of our multi-object tracking algorithm on public MOT Challenge datasets, and achieve outstanding results.

MirrorGAN: Learning Text-to-image Generation by Redescription

Abstract - Generating an image from a given text description has two goals: visual realism and semantic consistency. Although significant progress has been made in generating high-quality and visually realistic images using generative adversarial networks, guaranteeing semantic consistency between the text description and visual content remains very challenging. In this paper, we address this problem by proposing a novel global-local attentive and semantic-preserving text-to-image-to-text framework called MirrorGAN. MirrorGAN exploits the idea of learning textto-image generation by redescription and consists of three modules: a semantic text embedding module (STEM), a global-local collaborative attentive module for cascaded image generation (GLAM), and a semantic text regeneration and alignment module (STREAM). STEM generates word- and sentence-level embeddings. GLAM has a cascaded architecture for generating target images from coarse to fine scales, leveraging both local word attention and global sentence attention to progressively enhance the diversity and semantic consistency of the generated images. STREAM seeks to regenerate the text description from the generated image, which semantically aligns with the given text description. Thorough experiments on two public benchmark datasets demonstrate the superiority of MirrorGAN over other representative state-of-the-art methods.

Masked Face Recognition for Secure Authentication

Abstract - With the recent world-wide COVID-19 pandemic, using face masks have become an important part of our lives. People are encouraged to cover their faces when in public area to avoid the spread of infection. The use of these face masks has raised a serious question on the accuracy of the facial recognition system used for tracking school/office attendance and to unlock phones. Many organizations use facial recognition as a means of authentication and have already developed the necessary datasets in-house to be able to deploy such a system. Unfortunately, masked faces make it difficult to be detected and recognized, thereby threatening to make the in-house datasets invalid and making such facial recognition systems inoperable. This paper addresses a methodology to use the current facial datasets by augmenting it with tools that enable masked faces to be recognized with low false-positive rates and high overall accuracy, without requiring the user dataset to be recreated by taking new pictures for authentication. We present an opensource tool, MaskTheFace to mask faces effectively creating a large dataset of masked faces. The dataset generated with this tool is then used towards training an effective facial recognition system with target accuracy for masked faces. We report an increase of ∼ 38% in the true positive rate for the Facenet system. We also test the accuracy of re-trained system on a custom real-world dataset MFR2 and report similar accuracy.

Learning to See in the Dark

Abstract - Imaging in low light is challenging due to low photon count and low SNR. Short-exposure images suffer from noise, while long exposure can induce blur and is often impractical. A variety of denoising, deblurring, and enhancement techniques have been proposed, but their effectiveness is limited in extreme conditions, such as video-rate imaging at night. To support the development of learningbased pipelines for low-light image processing, we introduce a dataset of raw short-exposure low-light images, with corresponding long-exposure reference images. Using the presented dataset, we develop a pipeline for processing low-light images, based on end-to-end training of a fullyconvolutional network. The network operates directly on raw sensor data and replaces much of the traditional image processing pipeline, which tends to perform poorly on such data. We report promising results on the new dataset, analyze factors that affect performance, and highlight opportunities for future work.

Label-Noise Robust Generative Adversarial Networks

Abstract - Generative adversarial networks (GANs) are a framework that learns a generative distribution through adversarial training. Recently, their class conditional extensions (e.g., conditional GAN (cGAN) and auxiliary classifier GAN (AC-GAN)) have attracted much attention owing to their ability to learn the disentangled representations and to improve the training stability. However, their training requires the availability of large-scale accurate class-labeled data, which are often laborious or impractical to collect in a real-world scenario. To remedy this, we propose a novel family of GANs called label-noise robust GANs (rGANs), which, by incorporating a noise transition model, can learn a clean label conditional generative distribution even when training labels are noisy. In particular, we propose two variants: rAC-GAN, which is a bridging model between AC-GAN and the label-noise robust classification model, and rcGAN, which is an extension of cGAN and solves this problem with no reliance on any classifier. In addition to providing the theoretical background, we demonstrate the effectiveness of our models through extensive experiments using diverse GAN configurations, various noise settings, and multiple evaluation metrics (in which we tested 402 conditions in total).

Improved Techniques for Training GANs

Abstract - We present a variety of new architectural features and training procedures that we apply to the generative adversarial networks (GANs) framework. We focus on two applications of GANs: semi-supervised learning, and the generation of images that humans find visually realistic. Unlike most work on generative models, our primary goal is not to train a model that assigns high likelihood to test data, nor do we require the model to be able to learn well without using any labels. Using our new techniques, we achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN. The generated images are of high quality as confirmed by a visual Turing test: our model generates MNIST samples that humans cannot distinguish from real data, and CIFAR-10 samples that yield a human error rate of 21.3%. We also present ImageNet samples with unprecedented resolution and show that our methods enable the model to learn recognizable features of ImageNet classes.

Fully convolutional networks for medical image segmentation

Abstract - Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ∼10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of curre


Abstract - Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we systematically study model scaling and identify that carefully balancing network depth, width, and resolution can lead to better performance. Based on this observation, we propose a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient. We demonstrate the effectiveness of this method on scaling up MobileNets and ResNet. To go even further, we use neural architecture search to design a new baseline network and scale it up to obtain a family of models, called EfficientNets, which achieve much better accuracy and efficiency than previous ConvNets. In particular, our EfficientNet-B7 achieves stateof-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet, while being 8.4x smaller and 6.1x faster on inference than the best existing ConvNet. Our EfficientNets also transfer well and achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%), and 3 other transfer learning datasets, with an order of magnitude fewer parameters

Densely Connected Convolutional Networks

Abstract - Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less computation to achieve high performance

Deep Residual Learning for Image Recognition

Abstract - Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1 , where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

Conditional Image Generation with PixelCNN Decoders

Abstract - This work explores conditional image generation with a new image density model based on the PixelCNN architecture. The model can be conditioned on any vector, including descriptive labels or tags, or latent embeddings created by other networks. When conditioned on class labels from the ImageNet database, the model is able to generate diverse, realistic scenes representing distinct animals, objects, landscapes and structures. When conditioned on an embedding produced by a convolutional network given a single image of an unseen face, it generates a variety of new portraits of the same person with different facial expressions, poses and lighting conditions. We also show that conditional PixelCNN can serve as a powerful decoder in an image autoencoder. Additionally, the gated convolutional layers in the proposed model improve the log-likelihood of PixelCNN to match the state-ofthe-art performance of PixelRNN on ImageNet, with greatly reduced computational cost.

Co-Mining: Deep Face Recognition with Noisy Labels

Abstract - Face recognition has achieved significant progress with the growing scale of collected datasets, which empowers us to train strong convolutional neural networks (CNNs). While a variety of CNN architectures and loss functions have been devised recently, we still have a limited understanding of how to train the CNN models with the label noise inherent in existing face recognition datasets. To address this issue, this paper develops a novel co-mining strategy to effectively train on the datasets with noisy labels. Specifically, we simultaneously use the loss values as the cue to detect noisy labels, exchange the highconfidence clean faces to alleviate the errors accumulated issue caused by the sample-selection bias, and re-weight the predicted clean faces to make them dominate the discriminative model training in a mini-batch fashion. Extensive experiments by training on three popular datasets (i.e., CASIA-WebFace, MS-Celeb-1M and VggFace2) and testing on several benchmarks, including LFW, CALFW, CPLFW, AgeDB, CFP, RFW, and MegaFace, have demonstrated the effectiveness of our new approach over the stateof-the-art alternatives. Our code is available at http: //

Better, Faster, Stronger YOLO algorithm for real time object detection

Abstract - We introduce YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories. First we propose various improvements to the YOLO detection method, both novel and drawn from prior work. The improved model, YOLOv2, is state-of-the-art on standard detection tasks like PASCAL VOC and COCO. At 67 FPS, YOLOv2 gets 76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6 mAP, outperforming state-of-the-art methods like Faster RCNN with ResNet and SSD while still running significantly faster. Finally we propose a method to jointly train on object detection and classification. Using this method we train YOLO9000 simultaneously on the COCO detection dataset and the ImageNet classification dataset. Our joint training allows YOLO9000 to predict detections for object classes that don’t have labelled detection data. We validate our approach on the ImageNet detection task. YOLO9000 gets 19.7 mAP on the ImageNet detection validation set despite only having detection data for 44 of the 200 classes. On the 156 classes not in COCO, YOLO9000 gets 16.0 mAP. But YOLO can detect more than just 200 classes; it predicts detections for more than 9000 different object categories. And it still runs in real-time.

Zero-Shot Knowledge Distillation in Deep Networks

Abstract - Knowledge distillation deals with the problem of training a smaller model (Student) from a high capacity source model (Teacher) so as to retain most of its performance. Existing approaches use either the training data or meta-data extracted from it in order to train the Student. However, accessing the dataset on which the Teacher has been trained may not always be feasible if the dataset is very large or it poses privacy or safety concerns (e.g., bio-metric or medical data). Hence, in this paper, we propose a novel data-free method to train the Student from the Teacher. Without even using any meta-data, we synthesize the Data Impressions from the complex Teacher model and utilize these as surrogates for the original training data samples to transfer its learning to Student via knowledge distillation. We, therefore, dub our method “ZeroShot Knowledge Distillation” and demonstrate that our framework results in competitive generalization performance as achieved by distillation using the actual training data samples on multiple benchmark datasets

Weight Uncertainty in Neural Networks

Abstract - We introduce a new, efficient, principled and backpropagation-compatible algorithm for learning a probability distribution on the weights of a neural network, called Bayes by Backprop. It regularises the weights by minimising a compression cost, known as the variational free energy or the expected lower bound on the marginal likelihood. We show that this principled kind of regularisation yields comparable performance to dropout on MNIST classification. We then demonstrate how the learnt uncertainty in the weights can be used to improve generalisation in non-linear regression problems, and how this weight uncertainty can be used to drive the exploration-exploitation trade-off in reinforcement learning.

Unsupervised Sentiment Analysis for Code-mixed data

Abstract - Code-mixing is the practice of alternating between two or more languages. Mostly observed in multilingual societies, its occurrence is increasing and therefore its importance. A major part of sentiment analysis research has been monolingual, and most of them perform poorly on code-mixed text. In this work, we introduce methods that use different kinds of multilingual and cross-lingual embeddings to efficiently transfer knowledge from monolingual text to code-mixed text for sentiment analysis of code-mixed text. Our methods can handle code-mixed text through a zero-shot learning. Our methods beat state-of-the-art on English-Spanish code-mixed sentiment analysis by absolute 3\% F1-score. We are able to achieve 0.58 F1-score (without parallel corpus) and 0.62 F1-score (with parallel corpus) on the same benchmark in a zero-shot way as compared to 0.68 F1-score in supervised settings. Our code is publicly available.

U-Net: Convolutional Networks for Biomedical Image Segmentation

Abstract - There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU.

Tracking without bells and whistles

Abstract - The problem of tracking multiple objects in a video sequence poses several challenging tasks. For tracking-bydetection, these include object re-identification, motion prediction and dealing with occlusions. We present a tracker (without bells and whistles) that accomplishes tracking without specifically targeting any of these tasks, in particular, we perform no training or optimization on tracking data. To this end, we exploit the bounding box regression of an object detector to predict the position of an object in the next frame, thereby converting a detector into a Tracktor. We demonstrate the potential of Tracktor and provide a new state-of-the-art on three multi-object tracking benchmarks by extending it with a straightforward re-identification and camera motion compensation. We then perform an analysis on the performance and failure cases of several state-of-the-art tracking methods in comparison to our Tracktor. Surprisingly, none of the dedicated tracking methods are considerably better in dealing with complex tracking scenarios, namely, small and occluded objects or missing detections. However, our approach tackles most of the easy tracking scenarios. Therefore, we motivate our approach as a new tracking paradigm and point out promising future research directions. Overall, Tracktor yields superior tracking performance than any current tracking method and our analysis exposes remaining and unsolved tracking challenges to inspire future research directions.

Stochastic Attention Networks for SQuAD 2.0

Abstract - This paper presents an extension of the Stochastic Answer Network (SAN), one of the state-of-the-art machine reading comprehension models, to be able to judge whether a question is unanswerable or not. The extended SAN contains two components: a span detector and a binary classifier for judging whether the question is unanswerable, and both components are jointly optimized. Experiments show that SAN achieves the results competitive to the state-of-the-art on Stanford Question Answering Dataset (SQuAD) 2.0. To facilitate the research on this field, we release our code: this https URL.

Stacked Attention Networks for Image Question Answering

Abstract - This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.

Siamese Neural Networks for One-shot Image Recognition

Abstract - The process of learning good features for machine learning applications can be very computationally expensive and may prove difficult in cases where little data is available. A prototypical example of this is the one-shot learning setting, in which we must correctly make predictions given only a single example of each new class. In this paper, we explore a method for learning siamese neural networks which employ a unique structure to naturally rank similarity between inputs. Once a network has been tuned, we can then capitalize on powerful discriminative features to generalize the predictive power of the network not just to new data, but to entirely new classes from unknown distributions. Using a convolutional architecture, we are able to achieve strong results which exceed those of other deep learning models with near state-of-the-art performance on one-shot classification tasks.

Scale-recurrent Network for Deep Image Deblurring

Abstract - In single image deblurring, the “coarse-to-fine” scheme, i.e. gradually restoring the sharp image on different resolutions in a pyramid, is very successful in both traditional optimization-based methods and recent neural-network-based approaches. In this paper, we investigate this strategy and propose a Scale-recurrent Network (SRN-DeblurNet) for this deblurring task. Compared with the many recent learning-based approaches in [25], it has a simpler network structure, a smaller number of parameters and is easier to train. We evaluate our method on large-scale deblurring datasets with complex motion. Results show that our method can produce better quality results than state-of-the-arts, both quantitatively and qualitatively.

Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network

Abstract - Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods.

Prioritized Experience Replay

Abstract - Experience replay lets online reinforcement learning agents remember and reuse experiences from the past. In prior work, experience transitions were uniformly sampled from a replay memory. However, this approach simply replays transitions at the same frequency that they were originally experienced, regardless of their significance. In this paper we develop a framework for prioritizing experience, so as to replay important transitions more frequently, and therefore learn more efficiently. We use prioritized experience replay in Deep Q-Networks (DQN), a reinforcement learning algorithm that achieved human-level performance across many Atari games. DQN with prioritized experience replay achieves a new stateof-the-art, outperforming DQN with uniform replay on 41 out of 49 games.

Precise Detection in Densely Packed Scenes

Abstract - Man-made scenes can be densely packed, containing numerous objects, often identical, positioned in close proximity. We show that precise object detection in such scenes remains a challenging frontier even for state-of-the-art object detectors. We propose a novel, deep-learning based method for precise object detection, designed for such challenging settings. Our contributions include: (1) A layer for estimating the Jaccard index as a detection quality score; (2) a novel EM merging unit, which uses our quality scores to resolve detection overlap ambiguities; finally, (3) an extensive, annotated data set, SKU-110K, representing packed retail environments, released for training and testing under such extreme settings. Detection tests on SKU-110K and counting tests on the CARPK and PUCPR+ show our method to outperform existing state-of-the-art with substantial margins.

Point GNN: Graph Neural Networks for 3D object Detection in a point cloud

Abstract - In this paper, we propose a graph neural network to detect objects from a LiDAR point cloud. Towards this end, we encode the point cloud efficiently in a fixed radius near-neighbors graph. We design a graph neural network, named Point-GNN, to predict the category and shape of the object that each vertex in the graph belongs to. In Point-GNN, we propose an auto-registration mechanism to reduce translation variance, and also design a box merging and scoring operation to combine detections from multiple vertices accurately. Our experiments on the KITTI benchmark show the proposed approach achieves leading accuracy using the point cloud alone and can even surpass fusion-based algorithms. Our results demonstrate the potential of using the graph neural network as a new approach for 3D object detection. T

Pixel Deconvolutional Network

Abstract - Deconvolutional layers have been widely used in a variety of deep models for up-sampling, including encoder-decoder networks for semantic segmentation and deep generative models for unsupervised learning. One of the key limitations of deconvolutional operations is that they result in the so-called checkerboard problem. This is caused by the fact that no direct relationship exists among adjacent pixels on the output feature map. To address this problem, we propose the pixel deconvolutional layer (PixelDCL) to establish direct relationships among adjacent pixels on the up-sampled feature map. Our method is based on a fresh interpretation of the regular deconvolution operation. The resulting PixelDCL can be used to replace any deconvolutional layer in a plug-and-play manner without compromising the fully trainable capabilities of original models. The proposed PixelDCL may result in slight decrease in efficiency, but this can be overcome by an implementation trick. Experimental results on semantic segmentation demonstrate that PixelDCL can consider spatial features such as edges and shapes and yields more accurate segmentation outputs than deconvolutional layers. When used in image generation tasks, our PixelDCL can largely overcome the checkerboard problem suffered by regular deconvolution operations.

Object Contour Detection with a Fully Convolutional Encoder-Decoder Network

Abstract - We develop a deep learning algorithm for contour detection with a fully convolutional encoder-decoder network. Different from previous low-level edge detection, our algorithm focuses on detecting higher-level object contours. Our network is trained end-to-end on PASCAL VOC with refined ground truth from inaccurate polygon annotations, yielding much higher precision in object contour detection than previous methods. We find that the learned model generalizes well to unseen object classes from the same supercategories on MS COCO and can match state-of-the-art edge detection on BSDS500 with fine-tuning. By combining with the multiscale combinatorial grouping algorithm, our method can generate high-quality segmented object proposals, which significantly advance the state-of-the-art on PASCAL VOC (improving average recall from 0.62 to 0.67) with a relatively small amount of candidates (∼1660 per image).

Multi-Level Factorization Net for person Re-Identification

Abstract - Key to effective person re-identification (Re-ID) is modelling discriminative and view-invariant factors of person appearance at both high and low semantic levels. Recently developed deep Re-ID models either learn a holistic single semantic level feature representation and/or require laborious human annotation of these factors as attributes. We propose Multi-Level Factorisation Net (MLFN), a novel network architecture that factorises the visual appearance of a person into latent discriminative factors at multiple semantic levels without manual annotation. MLFN is composed of multiple stacked blocks. Each block contains multiple factor modules to model latent factors at a specific level, and factor selection modules that dynamically select the factor modules to interpret the content of each input image. The outputs of the factor selection modules also provide a compact latent factor descriptor that is complementary to the conventional deeply learned features. MLFN achieves state-of-the-art results on three Re-ID datasets, as well as compelling results on the general object categorisation CIFAR-100 dataset.

Message Passing Attention Networks for Document Understanding

Abstract - Graph neural networks have recently emerged as a very effective framework for processing graph-structured data. These models have achieved state-of-the-art performance in many tasks. Most graph neural networks can be described in terms of message passing, vertex update, and readout functions. In this paper, we represent documents as word co-occurrence networks and propose an application of the message passing framework to NLP, the Message Passing Attention network for Document understanding (MPAD). We also propose several hierarchical variants of MPAD. Experiments conducted on 10 standard text classification datasets show that our architectures are competitive with the state-of-the-art. Ablation studies reveal further insights about the impact of the different components on performance. Code is publicly available at: this https URL .

Mask R-CNN

Abstract - We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, boundingbox object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition

Libra R-CNN: Towards Balanced Learning for Object Detection

Abstract - Compared with model architectures, the training process, which is also crucial to the success of detectors, has received relatively less attention in object detection. In this work, we carefully revisit the standard training practice of detectors, and find that the detection performance is often limited by the imbalance during the training process, which generally consists in three levels – sample level, feature level, and objective level. To mitigate the adverse effects caused thereby, we propose Libra R-CNN, a simple but effective framework towards balanced learning for object detection. It integrates three novel components: IoU-balanced sampling, balanced feature pyramid, and balanced L1 loss, respectively for reducing the imbalance at sample, feature, and objective level. Benefitted from the overall balanced design, Libra R-CNN significantly improves the detection performance. Without bells and whistles, it achieves 2.5 points and 2.0 points higher Average Precision (AP) than FPN Faster R-CNN and RetinaNet respectively on MSCOCO. 1

Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.

Abstract - While humans easily recognize relations between data from different domains without any supervision, learning to automatically discover them is in general very challenging and needs many ground-truth pairs that illustrate the relations. To avoid costly pairing, we address the task of discovering cross-domain relations given unpaired data. We propose a method based on generative adversarial networks that learns to discover relations between different domains (DiscoGAN). Using the discovered relations, our proposed network successfully transfers style from one domain to another while preserving key attributes such as orientation and face identity.

Learning the Depths of Moving People by Watching Frozen People

Abstract - We present a method for predicting dense depth in scenarios where both a monocular camera and people in the scene are freely moving. Existing methods for recovering depth for dynamic, non-rigid objects from monocular video impose strong assumptions on the objects’ motion and may only recover sparse depth. In this paper, we take a data-driven approach and learn human depth priors from a new source of data: thousands of Internet videos of people imitating mannequins, i.e., freezing in diverse, natural poses, while a hand-held camera tours the scene. Because people are stationary, training data can be generated using multi-view stereo reconstruction. At inference time, our method uses motion parallax cues from the static areas of the scenes to guide the depth prediction. We demonstrate our method on real-world sequences of complex human actions captured by a moving hand-held camera, show improvement over stateof-the-art monocular depth prediction methods, and show various 3D effects produced using our predicted depth.

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

Abstract - This paper describes InfoGAN, an information-theoretic extension to the Generative Adversarial Network that is able to learn disentangled representations in a completely unsupervised manner. InfoGAN is a generative adversarial network that also maximizes the mutual information between a small subset of the latent variables and the observation. We derive a lower bound to the mutual information objective that can be optimized efficiently, and show that our training procedure can be interpreted as a variation of the Wake-Sleep algorithm. Specifically, InfoGAN successfully disentangles writing styles from digit shapes on the MNIST dataset, pose from lighting of 3D rendered images, and background digits from the central digit on the SVHN dataset. It also discovers visual concepts that include hair styles, presence/absence of eyeglasses, and emotions on the CelebA face dataset. Experiments show that InfoGAN learns interpretable representations that are competitive with representations learned by existing fully supervised methods.

Image-to-Image Translation with Conditional Adversarial Networks

Abstract - We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without hand-engineering our loss functions either.

Image Super-Resolution Using very deep Residual Channel Attention Networks.

Abstract - Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR). However, we observe that deeper networks for image SR are more difficult to train. The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs. To solve these problems, we propose the very deep residual channel attention networks (RCAN). Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections. Each residual group contains some residual blocks with short skip connections. Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information. Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels. Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods.

Image Style Transfer Using Convolutional Neural Networks

Abstract - Rendering the semantic content of an image in different styles is a difficult image processing task. Arguably, a major limiting factor for previous approaches has been the lack of image representations that explicitly represent semantic information and, thus, allow to separate image content from style. Here we use image representations derived from Convolutional Neural Networks optimised for object recognition, which make high level image information explicit. We introduce A Neural Algorithm of Artistic Style that can separate and recombine the image content and style of natural images. The algorithm allows us to produce new images of high perceptual quality that combine the content of an arbitrary photograph with the appearance of numerous wellknown artworks. Our results provide new insights into the deep image representations learned by Convolutional Neural Networks and demonstrate their potential for high level image synthesis and manipulation.

Image Captioning with Semantic Attention

Abstract - Automatically generating a natural language description of an image has attracted interests recently both because of its importance in practical applications and because it connects two major artificial intelligence fields: computer vision and natural language processing. Existing approaches are either top-down, which start from a gist of an image and convert it into words, or bottom-up, which come up with words describing various aspects of an image and then combine them. In this paper, we propose a new algorithm that combines both approaches through a model of semantic attention. Our algorithm learns to selectively attend to semantic concept proposals and fuse them into hidden states and outputs of recurrent neural networks. The selection and fusion form a feedback connecting the top-down and bottom-up computation. We evaluate our algorithm on two public benchmarks: Microsoft COCO and Flickr30K. Experimental results show that our algorithm significantly outperforms the state-of-the-art approaches consistently across different evaluation metrics.

Identity Mappings in Deep Residual Networks

Abstract - Deep residual networks [1] have emerged as a family of extremely deep architectures showing compelling accuracy and nice convergence behaviors. In this paper, we analyze the propagation formulations behind the residual building blocks, which suggest that the forward and backward signals can be directly propagated from one block to any other block, when using identity mappings as the skip connections and after-addition activation. A series of ablation experiments support the importance of these identity mappings. This motivates us to propose a new residual unit, which further makes training easy and improves generalization. We report improved results using a 1001-layer ResNet on CIFAR-10 (4.62% error) and CIFAR-100, and a 200-layer ResNet on ImageNet.

Hierarchical Attentional Hybrid Neural Networks for Document Classification

Abstract - Document classification is a challenging task with important applications. The deep learning approaches to the problem have gained much attention recently. Despite the progress, the proposed models do not incorporate the knowledge of the document structure in the architecture efficiently and not take into account the contexting importance of words and sentences. In this paper, we propose a new approach based on a combination of convolutional neural networks, gated recurrent units, and attention mechanisms for document classification tasks. The main contribution of this work is the use of convolution layers to extract more meaningful, generalizable and abstract features by the hierarchical representation. The proposed method in this paper improves the results of the current attention-based approaches for document classification.

Grid R-CNN

Abstract - This paper proposes a novel object detection framework named Grid R-CNN, which adopts a grid guided localization mechanism for accurate object detection. Different from the traditional regression based methods, the Grid R-CNN captures the spatial information explicitly and enjoys the position sensitive property of fully convolutional architecture. Instead of using only two independent points, we design a multi-point supervision formulation to encode more clues in order to reduce the impact of inaccurate prediction of specific points. To take the full advantage of the correlation of points in a grid, we propose a two-stage information fusion strategy to fuse feature maps of neighbor grid points. The grid guided localization approach is easy to be extended to different state-of-the-art detection frameworks. Grid R-CNN leads to high quality object localization, and experiments demonstrate that it achieves a 4.1% AP gain at IoU=0.8 and a 10.0% AP gain at IoU=0.9 on COCO benchmark compared to Faster R-CNN with Res50 backbone and FPN architecture.

Genetic CNN

Abstract - The deep Convolutional Neural Network (CNN) is the state-of-the-art solution for large-scale visual recognition. Following basic principles such as increasing the depth and constructing highway connections, researchers have manually designed a lot of fixed network structures and verified their effectiveness. In this paper, we discuss the possibility of learning deep network structures automatically. Note that the number of possible network structures increases exponentially with the number of layers in the network, which inspires us to adopt the genetic algorithm to efficiently traverse this large search space. We first propose an encoding method to represent each network structure in a fixed-length binary string, and initialize the genetic algorithm by generating a set of randomized individuals. In each generation, we define standard genetic operations, e.g., selection, mutation and crossover, to eliminate weak individuals and then generate more competitive ones. The competitiveness of each individual is defined as its recognition accuracy, which is obtained via training the network from scratch and evaluating it on a validation set. We run the genetic process on two small datasets, i.e., MNIST and CIFAR10, demonstrating its ability to evolve and find high-quality structures which are little studied before. These structures are also transferrable to the large-scale ILSVRC2012 dataset.

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Abstract - State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features—using the recently popular terminology of neural networks with “attention” mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

Fast R-CNN

Abstract - This paper proposes a Fast Region-based Convolutional Network method (Fast R-CNN) for object detection. Fast R-CNN builds on previous work to efficiently classify object proposals using deep convolutional networks. Compared to previous work, Fast R-CNN employs several innovations to improve training and testing speed while also increasing detection accuracy. Fast R-CNN trains the very deep VGG16 network 9× faster than R-CNN, is 213× faster at test-time, and achieves a higher mAP on PASCAL VOC 2012. Compared to SPPnet, Fast R-CNN trains VGG16 3× faster, tests 10× faster, and is more accurate

FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking

Abstract - There has been remarkable progress on object detection and re-identification (re-ID) in recent years which are the key components of multi-object tracking. However, little attention has been focused on jointly accomplishing the two tasks in a single network. Our study shows that the previous attempts ended up with degraded accuracy mainly because the re-ID task is not fairly learned which causes many identity switches. The unfairness lies in two-fold: (1) they treat re-ID as a secondary task whose accuracy heavily depends on the primary detection task. So training is largely biased to the detection task but ignores the re-ID task; (2) they use ROI-Align to extract re-ID features which is directly borrowed from object detection. However, this introduces a lot of ambiguity in characterizing objects because many sampling points may belong to disturbing instances or background. To solve the problems, we present a simple approach FairMOT which consists of two homogeneous branches to predict pixel-wise objectness scores and re-ID features. The achieved fairness between the tasks allows FairMOT to obtain high levels of detection and tracking accuracy and outperform previous state-of-the-arts by a large margin on several public datasets.

FaceNet: A Unified Embedding for Face Recognition and Clustering

Abstract - Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings as feature vectors. Our method uses a deep convolutional network trained to directly optimize the embedding itself, rather than an intermediate bottleneck layer as in previous deep learning approaches. To train, we use triplets of roughly aligned matching / non-matching face patches generated using a novel online triplet mining method. The benefit of our approach is much greater representational efficiency: we achieve state-of-the-art face recognition performance using only 128-bytes per face. On the widely used Labeled Faces in the Wild (LFW) dataset, our system achieves a new record accuracy of 99.63%. On YouTube Faces DB it achieves 95.12%. Our system cuts the error rate in comparison to the best published result [15] by 30% on both datasets. We also introduce the concept of harmonic embeddings, and a harmonic triplet loss, which describe different versions of face embeddings (produced by different networks) that are compatible to each other and allow for direct comparison between each other.

Every Picture Tells a Story: Generating Sentences from Images

Abstract - Humans can prepare concise descriptions of pictures, focusing on what they find important. We demonstrate that automatic methods can do so too. We describe a system that can compute a score linking an image to a sentence. This score can be used to attach a descriptive sentence to a given image, or to obtain images that illustrate a given sentence. The score is obtained by comparing an estimate of meaning obtained from the image to one obtained from the sentence. Each estimate of meaning comes from a discriminative procedure that is learned using data. We evaluate on a novel dataset consisting of human-annotated images. While our underlying estimate of meaning is impoverished, it is sufficient to produce very good quantitative results, evaluated with a novel score that can account for synecdoche.

Emotional Attention: A Study of Image Sentiment and Visual Attention

Abstract - Image sentiment influences visual perception. Emotioneliciting stimuli such as happy faces and poisonous snakes are generally prioritized in human attention. However, little research has evaluated the interrelationships of image sentiment and visual saliency. In this paper, we present the first study to focus on the relation between emotional properties of an image and visual attention. We first create the EMOtional attention dataset (EMOd). It is a diverse set of emotioneliciting images, and each image has (1) eye-tracking data collected from 16 subjects, (2) intensive image context labels including object contour, object sentiment, object semantic category, and high-level perceptual attributes such as image aesthetics and elicited emotions. We perform extensive analyses on EMOd to identify how image sentiment relates to human attention. We discover an emotion prioritization effect: for our images, emotion-eliciting content attracts human attention strongly, but such advantage diminishes dramatically after initial fixation. Aiming to model the human emotion prioritization computationally, we design a deep neural network for saliency prediction, which includes a novel subnetwork that learns the spatial and semantic context of the image scene. The proposed network outperforms the state-of-theart on three benchmark datasets, by effectively capturing the relative importance of human attention within an image

Effective Use of Word Order for Text Categorization with Convolutional Neural Networks

Abstract - Convolutional neural network (CNN) is a neural network that can make use of the internal structure of data such as the 2D structure of image data. This paper studies CNN on text categorization to exploit the 1D structure (namely, word order) of text data for accurate prediction. Instead of using low-dimensional word vectors as input as is often done, we directly apply CNN to high-dimensional text data, which leads to directly learning embedding of small text regions for use in classification. In addition to a straightforward adaptation of CNN from image to text, a simple but new variation which employs bag-ofword conversion in the convolution layer is proposed. An extension to combine multiple convolution layers is also explored for higher accuracy. The experiments demonstrate the effectiveness of our approach in comparison with state-of-the-art methods

Dueling Network Architectures for Deep Reinforcement Learning

Abstract - In recent years there have been many successes of using deep representations in reinforcement learning. Still, many of these applications use conventional architectures, such as convolutional networks, LSTMs, or auto-encoders. In this paper, we present a new neural network architecture for model-free reinforcement learning. Our dueling network represents two separate estimators: one for the state value function and one for the state-dependent action advantage function. The main benefit of this factoring is to generalize learning across actions without imposing any change to the underlying reinforcement learning algorithm. Our results show that this architecture leads to better policy evaluation in the presence of many similar-valued actions. Moreover, the dueling architecture enables our RL agent to outperform the state-of-the-art on the Atari 2600 domain.

DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

Abstract - Conditional Generative Adversarial Networks (GANs) for cross-domain image-to-image translation have made much progress recently. Depending on the task complexity, thousands to millions of labeled image pairs are needed to train a conditional GAN. However, human labeling is expensive, even impractical, and large quantities of data may not always be available. Inspired by dual learning from natural language translation, we develop a novel dual-GAN mechanism, which enables image translators to be trained from two sets of unlabeled images from two domains. In our architecture, the primal GAN learns to translate images from domain U to those in domain V, while the dual GAN learns to invert the task. The closed loop made by the primal and dual tasks allows images from either domain to be translated and then reconstructed. Hence a loss function that accounts for the reconstruction error of images can be used to train the translators. Experiments on multiple image translation tasks with unlabeled data show considerable performance gain of DualGAN over a single GAN. For some tasks, DualGAN can even achieve comparable or slightly better results than conditional GAN trained on fully labeled data.

Delete, Retrieve, Generate:A Simple Approach to Sentiment and Style Transfer

Abstract - We consider the task of text attribute transfer: transforming a sentence to alter a specific attribute (e.g., sentiment) while preserving its attribute-independent content (e.g., changing “screen is just the right size” to “screen is too small”). Our training data includes only sentences labeled with their attribute (e.g., positive or negative), but not pairs of sentences that differ only in their attributes, so we must learn to disentangle attributes from attribute-independent content in an unsupervised way. Previous work using adversarial methods has struggled to produce high-quality outputs. In this paper, we propose simpler methods motivated by the observation that text attributes are often marked by distinctive phrases (e.g., “too small”). Our strongest method extracts content words by deleting phrases associated with the sentence’s original attribute value, retrieves new phrases associated with the target attribute, and uses a neural model to fluently combine these into a final output. On human evaluation, our best method generates grammatical and appropriate responses on 22% more inputs than the best previous system, averaged over three attribute transfer datasets: altering sentiment of reviews on Yelp, altering sentiment of reviews on Amazon, and altering image captions to be more romantic or humorous.

Deep Sketch Hashing: Fast Free-hand Sketch-Based Image Retrieval

Abstract - Free-hand sketch-based image retrieval (SBIR) is a specific cross-view retrieval task, in which queries are abstract and ambiguous sketches while the retrieval database is formed with natural images. Work in this area mainly focuses on extracting representative and shared features for sketches and natural images. However, these can neither cope well with the geometric distortion between sketches and images nor be feasible for large-scale SBIR due to the heavy continuous-valued distance computation. In this paper, we speed up SBIR by introducing a novel binary coding method, named Deep Sketch Hashing (DSH), where a semi-heterogeneous deep architecture is proposed and incorporated into an end-to-end binary coding framework. Specifically, three convolutional neural networks are utilized to encode free-hand sketches, natural images and, especially, the auxiliary sketch-tokens which are adopted as bridges to mitigate the sketch-image geometric distortion. The learned DSH codes can effectively capture the crossview similarities as well as the intrinsic semantic correlations between different categories. To the best of our knowledge, DSH is the first hashing work specifically designed for category-level SBIR with an end-to-end deep architecture. The proposed DSH is comprehensively evaluated on two large-scale datasets of TU-Berlin Extension and Sketchy, and the experiments consistently show DSH’s superior SBIR accuracies over several state-of-the-art methods, while achieving significantly reduced retrieval time and memory footprint.

Deep hashing network for efficient similarity retrieval

Abstract - Due to the storage and retrieval efficiency, hashing has been widely deployed to approximate nearest neighbor search for large-scale multimedia retrieval. Supervised hashing, which improves the quality of hash coding by exploiting the semantic similarity on data pairs, has received increasing attention recently. For most existing supervised hashing methods for image retrieval, an image is first represented as a vector of hand-crafted or machine-learned features, followed by another separate quantization step that generates binary codes. However, suboptimal hash coding may be produced, because the quantization error is not statistically minimized and the feature representation is not optimally compatible with the binary coding. In this paper, we propose a novel Deep Hashing Network (DHN) architecture for supervised hashing, in which we jointly learn good image representation tailored to hash coding and formally control the quantization error. The DHN model constitutes four key components: (1) a subnetwork with multiple convolution-pooling layers to capture image representations; (2) a fully-connected hashing layer to generate compact binary hash codes; (3) a pairwise crossentropy loss layer for similarity-preserving learning; and (4) a pairwise quantization loss for controlling hashing quality. Extensive experiments on standard image retrieval datasets show the proposed DHN model yields substantial boosts over latest state-of-the-art hashing methods.

Deep Complex Networks

Abstract - At present, the vast majority of building blocks, techniques, and architectures for deep learning are based on real-valued operations and representations. However, recent work on recurrent neural networks and older fundamental theoretical analysis suggests that complex numbers could have a richer representational capacity and could also facilitate noise-robust memory retrieval mechanisms. Despite their attractive properties and potential for opening up entirely new neural architectures, complex-valued deep neural networks have been marginalized due to the absence of the building blocks required to design such models. In this work, we provide the key atomic components for complex-valued deep neural networks and apply them to convolutional feed-forward networks and convolutional LSTMs. More precisely, we rely on complex convolutions and present algorithms for complex batch-normalization, complex weight initialization strategies for complex-valued neural nets and we use them in experiments with end-to-end training schemes. We demonstrate that such complex-valued models are competitive with their real-valued counterparts. We test deep complex models on several computer vision tasks, on music transcription using the MusicNet dataset and on Speech Spectrum Prediction using the TIMIT dataset. We achieve state-of-the-art performance on these audio-related tasks.

DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks

Abstract - We present DeblurGAN, an end-to-end learned method for motion deblurring. The learning is based on a conditional GAN and the content loss . DeblurGAN achieves state-of-the art performance both in the structural similarity measure and visual appearance. The quality of the deblurring model is also evaluated in a novel way on a real-world problem – object detection on (de-)blurred images. The method is 5 times faster than the closest competitor – DeepDeblur. We also introduce a novel method for generating synthetic motion blurred images from sharp ones, allowing realistic dataset augmentation.

Convolutional Sequence to Sequence Model for Human Dynamics

Abstract - Human motion modeling is a classic problem in computer vision and graphics. Challenges in modeling human motion include high dimensional prediction as well as extremely complicated dynamics.We present a novel approach to human motion modeling based on convolutional neural networks (CNN). The hierarchical structure of CNN makes it capable of capturing both spatial and temporal correlations effectively. In our proposed approach, a convolutional long-term encoder is used to encode the whole given motion sequence into a long-term hidden variable, which is used with a decoder to predict the remainder of the sequence. The decoder itself also has an encoder-decoder structure, in which the short-term encoder encodes a shorter sequence to a short-term hidden variable, and the spatial decoder maps the long and short-term hidden variable to motion predictions. By using such a model, we are able to capture both invariant and dynamic information of human motion, which results in more accurate predictions. Experiments show that our algorithm outperforms the state-of-the-art methods on the Human3.6M and CMU Motion Capture datasets

Convolutional Image Captioning

Abstract - Image captioning is an important task, applicable to virtual assistants, editing tools, image indexing, and support of the disabled. In recent years significant progress has been made in image captioning, using Recurrent Neural Networks powered by long-short-term-memory (LSTM) units. Despite mitigating the vanishing gradient problem, and despite their compelling ability to memorize dependencies, LSTM units are complex and inherently sequential across time. To address this issue, recent work has shown benefits of convolutional networks for machine translation and conditional image generation . Inspired by their success, in this paper, we develop a convolutional image captioning technique. We demonstrate its efficacy on the challenging MSCOCO dataset and demonstrate performance on par with the LSTM baseline, while having a faster training time per number of parameters. We also perform a detailed analysis, providing compelling reasons in favor of convolutional language generation approaches

Conditional Generative Adversarial Nets

Abstract - Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustrate how this model could be used to learn a multi-modal model, and provide preliminary examples of an application to image tagging in which we demonstrate how this approach can generate descriptive tags which are not part of training labels.

BAKSA at SemEval-2020 Task 9: Bolstering CNN with Self-Attention forSentiment Analysis of Code Mixed Text

Abstract - Sentiment Analysis of code-mixed text has diversified applications in opinion mining ranging from tagging user reviews to identifying social or political sentiments of a sub-population. In this paper, we present an ensemble architecture of convolutional neural net (CNN) and self-attention based LSTM for sentiment analysis of code-mixed tweets. While the CNN component helps in the classification of positive and negative tweets, the self-attention based LSTM, helps in the classification of neutral tweets, because of its ability to identify correct sentiment among multiple sentiment bearing units. We achieved F1 scores of 0.707 (ranked 5th) and 0.725 (ranked 13th) on Hindi-English (Hinglish) and Spanish-English (Spanglish) datasets, respectively. The submissions for Hinglish and Spanglish tasks were made under the usernames ayushk and harsh_6 respectively.

Bag of Tricks for Image Classification with Convolutional Neural Networks

Abstract - Much of the recent progress made in image classification research can be credited to training procedure refinements, such as changes in data augmentations and optimization methods. In the literature, however, most refinements are either briefly mentioned as implementation details or only visible in source code. In this paper, we will examine a collection of such refinements and empirically evaluate their impact on the final model accuracy through ablation study. We will show that, by combining these refinements together, we are able to improve various CNN models significantly. For example, we raise ResNet-50’s top-1 validation accuracy from 75.3% to 79.29% on ImageNet. We will also demonstrate that improvement on image classification accuracy leads to better transfer learning performance in other application domains such as object detection and semantic segmentation.

Attention-based LSTM for Aspect-level Sentiment Classification

Abstract - Aspect-level sentiment classification is a finegrained task in sentiment analysis. Since it provides more complete and in-depth results, aspect-level sentiment analysis has received much attention these years. In this paper, we reveal that the sentiment polarity of a sentence is not only determined by the content but is also highly related to the concerned aspect. For instance, “The appetizers are ok, but the service is slow.”, for aspect taste, the polarity is positive while for service, the polarity is negative. Therefore, it is worthwhile to explore the connection between an aspect and the content of a sentence. To this end, we propose an Attention-based Long Short-Term Memory Network for aspect-level sentiment classification. The attention mechanism can concentrate on different parts of a sentence when different aspects are taken as input. We experiment on the SemEval 2014 dataset and results show that our model achieves state-ofthe-art performance on aspect-level sentiment classification.

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Abstract - While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer can perform very well on image classification tasks when applied directly to sequences of image patches. When pre-trained on large amounts of data and transferred to multiple recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer attain excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.

AKHCRNet: Bengali handwritten character recognition using deep learning

Abstract - I propose a state of the art deep neural architectural solution for handwritten character recognition for Bengali alphabets, compound characters as well as numerical digits that achieves state-of-the-art accuracy 96.8% in just 11 epochs. Similar work has been done before by Chatterjee, Swagato, et al.[1] but they achieved 96.12% accuracy in about 47 epochs. The deep neural architecture used in that paper was fairly large considering the inclusion of the weights of the ResNet 50 model which is a 50 layer Residual Network. This proposed model achieves higher accuracy as compared to any previous work & in a little number of epochs. ResNet50 is a good model trained on the ImageNet dataset, but I propose an HCR network that is trained from the scratch on Bengali characters without the ”Ensemble Learning” that can outperform previous architectures.

Adapt or Get Left Behind: Domain Adaptation through BERT Language Model Finetuning for Aspect-Target Sentiment Classification

Abstract - Aspect-Target Sentiment Classification (ATSC) is a subtask of Aspect-Based Sentiment Analysis (ABSA), which has many applications e.g. in e-commerce, where data and insights from reviews can be leveraged to create value for businesses and customers. Recently, deep transfer-learning methods have been applied successfully to a myriad of Natural Language Processing (NLP) tasks, including ATSC. Building on top of the prominent BERT language model, we approach ATSC using a two-step procedure: self-supervised domain-specific BERT language model finetuning, followed by supervised task-specific finetuning. Our findings on how to best exploit domain-specific language model finetuning enable us to produce new state-of-the-art performance on the SemEval 2014 Task 4 restaurants dataset. In addition, to explore the real-world robustness of our models, we perform cross-domain evaluation. We show that a cross-domain adapted BERT language model performs significantly better than strong baseline models like vanilla BERT-base and XLNet-base. Finally, we conduct a case study to interpret model prediction errors.

A Style-Based Generator Architecture for Generative Adversarial Networks

Abstract - We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces

A Neural Algorithm of Artistic Style

Abstract - In fine art, especially painting, humans have mastered the skill to create unique visual experiences through composing a complex interplay between the content and style of an image. Thus far the algorithmic basis of this process is unknown and there exists no artificial system with similar capabilities. However, in other key areas of visual perception such as object and face recognition near-human performance was recently demonstrated by a class of biologically inspired vision models called Deep Neural Networks.1, 2 Here we introduce an artificial system based on a Deep Neural Network that creates artistic images of high perceptual quality. The system uses neural representations to separate and recombine content and style of arbitrary images, providing a neural algorithm for the creation of artistic images. Moreover, in light of the striking similarities between performance-optimised artificial neural networks and biological vision,3–7 our work offers a path forward to an algorithmic understanding of how humans create and perceive artistic imagery

A Closer Look at Spatiotemporal Convolutions for Action Recognition

Abstract - In this paper we discuss several forms of spatiotemporal convolutions for video analysis and study their effects on action recognition. Our motivation stems from the observation that 2D CNNs applied to individual frames of the video have remained solid performers in action recognition. In this work we empirically demonstrate the accuracy advantages of 3D CNNs over 2D CNNs within the framework of residual learning. Furthermore, we show that factorizing the 3D convolutional filters into separate spatial and temporal components yields significantly advantages in accuracy. Our empirical study leads to the design of a new spatiotemporal convolutional block “R(2+1)D” which gives rise to CNNs that achieve results comparable or superior to the state-of-the-art on Sports-1M, Kinetics, UCF101 and HMDB51.

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Abstract - Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples. Our goal is to learn a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping F : Y → X and introduce a cycle consistency loss to enforce F(G(X)) ≈ X (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Abstract - Recent studies have shown remarkable success in imageto-image translation for two domains. However, existing approaches have limited scalability and robustness in handling more than two domains, since different models should be built independently for every pair of image domains. To address this limitation, we propose StarGAN, a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model. Such a unified model architecture of StarGAN allows simultaneous training of multiple datasets with different domains within a single network. This leads to StarGAN’s superior quality of translated images compared to existing models as well as the novel capability of flexibly translating an input image to any desired target domain. We empirically demonstrate the effectiveness of our approach on a facial attribute transfer and a facial expression synthesis tasks.

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

Abstract - Synthesizing high-quality images from text descriptions is a challenging problem in computer vision and has many practical applications. Samples generated by existing textto-image approaches can roughly reflect the meaning of the given descriptions, but they fail to contain necessary details and vivid object parts. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) to generate 256⇥256 photo-realistic images conditioned on text descriptions. We decompose the hard problem into more manageable sub-problems through a sketch-refinement process. The Stage-I GAN sketches the primitive shape and colors of the object based on the given text description, yielding Stage-I low-resolution images. The Stage-II GAN takes Stage-I results and text descriptions as inputs, and generates high-resolution images with photo-realistic details. It is able to rectify defects in Stage-I results and add compelling details with the refinement process. To improve the diversity of the synthesized images and stabilize the training of the conditional-GAN, we introduce a novel Conditioning Augmentation technique that encourages smoothness in the latent conditioning manifold. Extensive experiments and comparisons with state-of-the-arts on benchmark datasets demonstrate that the proposed method achieves significant improvements on generating photo-realistic images conditioned on text descriptions.

Rotation-invariant convolutional neural networks for galaxy morphology prediction

Abstract - Measuring the morphological parameters of galaxies is a key requirement for studying their formation and evolution. Surveys such as the Sloan Digital Sky Survey (SDSS) have resulted in the availability of very large collections of images, which have permitted population-wide analyses of galaxy morphology. Morphological analysis has traditionally been carried out mostly via visual inspection by trained experts, which is time-consuming and does not scale to large (& 104 ) numbers of images. Although attempts have been made to build automated classification systems, these have not been able to achieve the desired level of accuracy. The Galaxy Zoo project successfully applied a crowdsourcing strategy, inviting online users to classify images by answering a series of questions. Unfortunately, even this approach does not scale well enough to keep up with the increasing availability of galaxy images. We present a deep neural network model for galaxy morphology classification which exploits translational and rotational symmetry. It was developed in the context of the Galaxy Challenge, an international competition to build the best model for morphology classification based on annotated images from the Galaxy Zoo project. For images with high agreement among the Galaxy Zoo participants, our model is able to reproduce their consensus with near-perfect accuracy (> 99%) for most questions. Confident model predictions are highly accurate, which makes the model suitable for filtering large collections of images and forwarding challenging images to experts for manual annotation. This approach greatly reduces the experts’ workload without affecting accuracy. The application of these algorithms to larger sets of training data will be critical for analysing results from future surveys such as the LSST.

Pose Guided Person Image Generation

Abstract - This paper proposes the novel Pose Guided Person Generation Network (PG2 ) that allows to synthesize person images in arbitrary poses, based on an image of that person and a novel pose. Our generation framework PG2 utilizes the pose information explicitly and consists of two key stages: pose integration and image refinement. In the first stage the condition image and the target pose are fed into a U-Net-like network to generate an initial but coarse image of the person with the target pose. The second stage then refines the initial and blurry result by training a U-Net-like generator in an adversarial way. Extensive experimental results on both 128×64 re-identification images and 256×256 fashion photos show that our model generates high-quality person images with convincing details.

Perceptual Losses for Real-Time Style Transfer and Super-Resolution

Abstract - We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a per-pixel loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing perceptual loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.

Attribute Augmented Convolutional Neural Network for Face Hallucination

Abstract - Though existing face hallucination methods achieve great performance on the global region evaluation, most of them cannot recover local attributes accurately, especially when super-resolving a very low-resolution face image from 14 × 12 pixels to its 8 × larger one. In this paper, we propose a brand new Attribute Augmented Convolutional Neural Network (AACNN) to assist face hallucination by exploiting facial attributes. The goal is to augment face hallucination, particularly the local regions, with informative attribute description. More specifically, our method fuses the advantages of both image domain and attribute domain, which significantly assists facial attributes recovery. Extensive experiments demonstrate that our proposed method achieves superior visual quality of hallucination on both local region and global region against the state-of-the-art methods. In addition, our AACNN still improves the performance of hallucination adaptively with partial attribute input.

Age Progression/Regression by Conditional Adversarial Autoencoder

Abstract - “If I provide you a face image of mine (without telling you the actual age when I took the picture) and a large amount of face images that I crawled (containing labeled faces of different ages but not necessarily paired), can you show me what I would look like when I am 80 or what I was like when I was 5?” The answer is probably a “No.” Most existing face aging works attempt to learn the transformation between age groups and thus would require the paired samples as well as the labeled query image. In this paper, we look at the problem from a generative modeling perspective such that no paired samples is required. In addition, given an unlabeled image, the generative model can directly produce the image with desired age attribute. We propose a conditional adversarial autoencoder (CAAE) that learns a face manifold, traversing on which smooth age progression and regression can be realized simultaneously. In CAAE, the face is first mapped to a latent vector through a convolutional encoder, and then the vector is projected to the face manifold conditional on age through a deconvolutional generator. The latent vector preserves personalized face features (i.e., personality) and the age condition controls progression vs. regression. Two adversarial networks are imposed on the encoder and generator, respectively, forcing to generate more photo-realistic faces. Experimental results demonstrate the appealing performance and flexibility of the proposed framework by comparing with the state-of-the-art and ground truth.

Back to Top ↑